Drone-Assisted Image Processing Scheme using Frame-Based Location Identification for Crack and Energy Loss Detection in Building Envelopes

Author:

Oh SukjoonORCID,Ham Suyeon,Lee SeongjinORCID

Abstract

This paper presents improved methods to detect cracks and thermal leakage in building envelopes using unmanned aerial vehicles (UAV) (i.e., drones) with video camcorders and/or infrared cameras. Three widely used contour detectors of Sobel, Laplacian, and Canny algorithms were compared to find a better solution with low computational overhead. Furthermore, a scheme using frame-based location identification was developed to effectively utilize the existing approach by finding the current location of the drone-assisted image frame. The results showed a simplified drone-assisted scheme along with automation, higher accuracy, and better speed while using lower battery energy. Furthermore, this paper found that the cost-effective drone with the attached equipment generated accurate results without using an expensive drone. The new scheme of this paper will contribute to automated anomaly detection, energy auditing, and commissioning for sustainably built environments.

Funder

National Research Foundation of Korea

Forest Science Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones

2. Ministry of Land Infrastructure and Transport Statistics of Infrastructure Built More than 30 Years in Cities and Provinceshttp://www.blcm.go.kr/stat/customizedStatic/CustomizedStaticSupplyList.do

3. Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3