Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application

Author:

Barichello Jessica,Vesce LuigiORCID,Mariani PaoloORCID,Leonardi Enrico,Braglia RobertoORCID,Di Carlo AldoORCID,Canini AntonellaORCID,Reale AndreaORCID

Abstract

Our world is facing an environmental crisis that is driving scientists to research green and smart solutions in terms of the use of renewable energy sources and low polluting technologies. In this framework, photovoltaic (PV) technology is one of the most worthy of interest. Dye-sensitized solar cells (DSSCs) are innovative PV devices known for their encouraging features of low cost and easy fabrication, good response to diffuse light and colour tunability. All these features make DSSCs technology suitable for being applied to the so-called agrovoltaic field, taking into account their dual role of filtering light and supporting energy needs. In this project, we used 40 DSSC Z-series connected modules with the aim of combining the devices’ high conversion efficiency, transparency and robustness in order to test them in a greenhouse. A maximum conversion efficiency of 3.9% on a 221 cm2 active area was achieved with a transparency in the module’s aperture (312.9 cm2) area of 35%. Moreover, different modules were stressed at two different temperature conditions, 60 °C and 85 °C, and under light soaking at the maximum power point, showing a strong and robust stability for 1000 h. We assembled the fabricated modules to form ten panels to filter the light from the roof of the greenhouse. We carried out panel measurements in outdoor and greenhouse environments in both sunny and cloudy conditions to find clear trends in efficiency behaviour. A maximum panel efficiency in outdoor conditions of 3.83% was obtained in clear and sunny sky conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3