Study on the Relationship between Thermal Comfort and Learning Efficiency of Different Classroom-Types in Transitional Seasons in the Hot Summer and Cold Winter Zone of China

Author:

Liu Haiqiang,Ma XidongORCID,Zhang Zhihao,Cheng Xiaoling,Chen Yanmi,Kojima Shoichi

Abstract

The physical environment of classrooms has a strong relationship with student learning performance and health. Since the outbreak of COVID-19 in 2019, almost all universities have begun implementing closed instructional management, which has forced students to spend a much longer amount of time inside the classroom. This has also led to an increasing problem of thermal comfort in classroom indoor environments. In this paper, classrooms evolved from three dominant teaching modes at Zhejiang Sci-Tech University (ZSTU), located in the Hot Summer and Cold Winter (HSCW) zone of China, were selected as experimental spaces. Meanwhile, 12 learning groups with 60 students (30 of each sex) were selected as the tested samples. The relationship between thermal comfort and learning efficiency of the tested students was established through thermal comfort questionnaires and learning efficiency tests under the typical natural conditions in transition seasons. Based on this, improvement strategies were proposed for the current state of the classroom environment, providing a database for optimizing the environmental conditions of university classrooms in HSCW zone on the basis of improving students’ learning efficiency.

Funder

the Scientific Research Foundations of Zhejiang Sci-tech University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. Indoor environmental quality and pupil perception in Italian primary schools

2. A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV)

3. Extension of the PMV model to non-air-conditioned buildings in warm climates

4. ASHRAE and Thermal Environmental Conditions for Human Occupancy. ASHRAE Standard 55,2017

5. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3