Optimal Location-Allocation of Printing Devices for Energy Saving Using a Novel MILP Approach

Author:

Kaszyński PrzemysławORCID,Benalcazar PabloORCID,Pałka PiotrORCID,Rój Roman,Malec MarcinORCID

Abstract

In recent years, a growing number of enterprises have taken different steps to reduce the energy consumption and carbon emissions of information and communication technology (ICT) assets. Because of the expansion of digitalization and the need for rapid access to information, enterprises have been compelled to optimize the location and utilization of their ICT hardware. In this context, this paper presents a novel method based on a mixed-integer linear programming approach for optimizing the physical location and task allocation of printing devices in office floor plans considering the power usage of the ICT assets, the costs related to the purchase and service of the individual devices, operating costs, and distance between employees and printing devices. The applicability of the proposed model is illustrated using the case study of a company with 100 functional departments located in several office buildings across Poland. The results reveal that the model guarantees the execution of all printing tasks and satisfies the functionality requirements expressed by the users of the workstations. Moreover, the selection of more energy-efficient printing devices leads to a considerable reduction in electricity consumption, related not only to the direct operation of these devices but also to their modes of operation (work, idle, or sleep). Such results also bring tangible effects in reducing carbon dioxide emissions, which is particularly important for businesses operating in countries where fossil fuels still dominate the energy mix.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3