Abstract
The effects of global warming are putting the world’s coasts at risk. Coastal planners need relatively accurate projections of the rate of sea-level rise and its possible consequences, such as extreme sea-level changes, flooding, and coastal erosion. The east coast of Peninsular Malaysia is vulnerable to sea-level change. The purpose of this study is to present an Artificial Neural Network (ANN) model to analyse sea-level change based on observed data of tide gauge, rainfall, sea level pressure, sea surface temperature, and wind. A Feed-forward Neural Network (FNN) approach was used on observed data from 1991 to 2012 to simulate and predict the sea level change until 2020 from five tide gauge stations in Kuala Terengganu along the East Coast of Malaysia. From 1991 to 2020, predictions estimate that sea level would increase at a pace of roughly 4.60 mm/year on average, with a rate of 2.05 ± 7.16 mm on the East Coast of Peninsular Malaysia. This study shows that Peninsular Malaysia’s East Coast is vulnerable to sea-level rise, particularly at Kula Terengganu, Terengganu state, with a rate of 1.38 ± 7.59 mm/year, and Tanjung Gelang, Pahang state, with a rate of 1.87 ± 7.33 mm/year. As a result, strategies and planning for long-term adaptation are needed to control potential consequences. Our research provides crucial information for decision-makers seeking to protect coastal cities from the risks of rising sea levels.
Funder
Universiti Putra Malaysia
Universiti Malaysia Terengganu
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献