Millennial-Scale Carbon Storage in Natural Pine Forests of the North Carolina Lower Coastal Plain: Effects of Artificial Drainage in a Time of Rapid Sea Level Rise

Author:

Aguilos MaricarORCID,Brown Charlton,Minick Kevan,Fischer MilanORCID,Ile Omoyemeh J.,Hardesty Deanna,Kerrigan Maccoy,Noormets AskoORCID,King John

Abstract

Coastal forested wetlands provide important ecosystem services along the southeastern region of the United States, but are threatened by anthropogenic and natural disturbances. Here, we examined the species composition, mortality, aboveground biomass, and carbon content of vegetation and soils in natural pine forests of the lower coastal plain in eastern North Carolina, USA. We compared a forest clearly in decline (termed “ghost forest”) adjacent to a roadside canal that had been installed as drainage for a road next to an adjacent forest subject to “natural” hydrology, unaltered by human modification (termed “healthy forest”). We also assessed how soil organic carbon (SOC) accumulation changed over time using 14C radiocarbon dating of wood sampled at different depths within the peat profile. Our results showed that the ghost forest had a higher tree density at 687 trees ha−1, and was dominated by swamp bays (Persea palustric), compared to the healthy forest, which had 265 trees ha−1 dominated by pond pine (Pinus serotina Michx). Overstory tree mortality of the ghost forest was nearly ten times greater than the healthy forest (p < 0.05), which actually contributed to higher total aboveground biomass (55.9 ± 12.6 Mg C ha−1 vs. 27.9 ± 8.7 Mg ha−1 in healthy forest), as the dead standing tree biomass (snags) added to that of an encroaching woody shrub layer during ecosystem transition. Therefore, the total aboveground C content of the ghost forest, 33.98 ± 14.8 Mg C ha−1, was higher than the healthy forest, 24.7 ± 5.2 Mg C ha−1 (p < 0.05). The total SOC stock down to a 2.3 m depth in the ghost forest was 824.1 ± 46.2 Mg C ha−1, while that of the healthy forest was 749.0 ± 170.5 Mg C ha−1 (p > 0.05). Carbon dating of organic sediments indicated that, as the sample age approaches modern times (surface layer year 2015), the organic soil accumulation rate (1.11 to 1.13 mm year−1) is unable to keep pace with the estimated rate of recent sea level rise (2.1 to 2.4 mm year−1), suggesting a causative relationship with the ecosystem transition occurring at the site. Increasing hydrologic stress over recent decades appears to have been a major driver of ecosystem transition, that is, ghost forest formation and woody shrub encroachment, as indicated by the far higher overstory tree mortality adjacent to the drainage ditch, which allows the inland propagation of hydrologic/salinity forcing due to SLR and extreme storms. Our study documents C accumulation in a coastal wetland over the past two millennia, which is now threatened due to the recent increase in the rate of SLR exceeding the natural peat accumulation rate, causing an ecosystem transition with unknown consequences for the stored C; however, much of it will eventually be returned to the atmosphere. More studies are needed to determine the causes and consequences of coastal ecosystem transition to inform the modeling of future coastal wetland responses to environmental change and the estimation of regional terrestrial C stocks and flux.

Funder

USDA NIFA

USDA Forest Service

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3