Abstract
As a form of land marginalization, abandoned cropland has an important impact on food security and the effective supply of agricultural products. With rapid urbanization across the world, large areas of cropland are abandoned in some regions, especially in mountainous and hilly areas with poor terrain. Due to the fine fragmentation and scattered distribution of abandoned cropland, and considering differences in the abandoned and fallow time of cropland, it is difficult to extract information using remote sensing technology. Therefore, this paper proposes a change in the detection method for extracting abandoned cropland information based on identifying the annual land use trajectory. Based on Landsat satellite data, annual land use was mapped from 2011 to 2020 in Gaolan County, which is located in the hilly and gully region of the Loess Plateau of China, using the random forest classification method. Subsequently, abandoned cropland information in Gaolan County was extracted, based on the land use change trajectory and analysis of the influencing factors of abandoned land. The results showed that: (1) The overall accuracy of land use interpretation in Gaolan County ranged from 86.44% to 95.45%, from 2011 to 2020, with a kappa coefficient of up to 0.93, and the classification results were ideal. (2) The recall of extracted abandoned cropland was 81%, the extraction accuracy of which was relatively high. (3) From 2013 to 2020, the cropland abandonment rate in Gaolan County ranged from 8.41% to 19.65%, with an average of 14.55%, which increased and then decreased. The abandonment rate was highest in 2015 but it then decreased year by year. The average period of abandoned cropland was 4.2 years. (4) The influence factors of the plot scale explain the difference in the spatial distribution of cultivated land abandonment. The higher the slope condition, the lower the soil nutrient content and the greater the possibility of abandonment.
Funder
National Natural Science Foundation of China
the Second Tibetan Plateau Scientific Expedition and Research
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献