Author:
Li Wenkai,Zeng Haodong,Peng Tao,Gao Ziteng,Xie Zhiyong
Abstract
In this study, a highly conductive composite bipolar plate with an embedded conductive carbon nanofiber network was prepared by chemical vapor deposition, and a conductive network was constructed inside the composite bipolar plate. The latter network was then compared with a conductive network formed by directly adding carbon nanotubes more evenly distributed. The optimum preparation methods of vapor-grown carbon fibers and the fiber content were analyzed, and the specific surface area and porosity of the bipolar plates were measured and analyzed using a BET test. The results show that the carbon nanofibers prepared under the conditions of 700 °C and a content of 2% exhibited the best effect on improving the performance of the bipolar plates. The conductivity of the prepared bipolar plates could reach 255.2 S/cm, which is 22.1% higher than treatment with multi-walled carbon nanotubes. The bending strength of the prepared bipolar plates was 47.92 MPa, and the interface contact resistance was 6.24 mΩ·cm2. In conclusion, the bipolar plates modified with vapor-grown carbon fibers were a promising kind of material for proton exchange membrane fuel cells.
Funder
Ministry of Science and Technology of the People's Republic of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献