Abstract
The cooled cooling air technology (CCA technology) shows expected performance in solving the growing thermal challenge for advanced aero engines by reducing the temperature of cooling air. The effect of CCA technology on the overall propelling performance with or without adjusting cycle parameters is controversial. Based on this, both the energy and exergy methods have been adopted to elaborate the specific mechanisms of the above energy utilization discrepancy. As a result, the scheme of CCA technology without optimizing cycle parameters has lower propelling work and efficiency with the total exergy destruction increasing 0.5~2%. Oppositely, as for the scheme of CCA with meliorated cycle parameters, the propelling efficiency improved by around 2~4% with total exergy destruction reduced by 1~3.5%. By analyzing the distribution of exergy destruction, the avoidable and unavoidable exergy destruction caused by the combustion chamber, compressors, and turbines accounts for the largest proportion, which indicates that more attention needs to be paid in the future. During the whole flight mission, the percentage of exergy destruction is much higher in supersonic, subsonic cruise, combat, and escape conditions. In conclusion, the improvement of cycle parameters to reduce the exergy destruction should be considered when introducing CCA technology.
Funder
National Science and Technology Major Project of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献