Application of Alternating Current Stress Measurement Method in the Stress Detection of Long-Distance Oil Pipelines

Author:

Duan Jinyao,Song Kai,Xie Wenyu,Jia Guangming,Shen Chuang

Abstract

With the development of pipeline networks, many safety accidents were caused by pipeline stress concentration; it is of great significance to accurately monitor the pipeline stress state for maintaining pipeline safety. In this paper, based on alternating current stress measurement (ACSM) methods, a 3D simulation model of a pipeline electromagnetic field was established by ANSYS software. The distribution law of the pipeline magnetic field and eddy current field were analyzed, and the influence of size and structure parameters of the coil inside the probe were studied. The internal stress detection system of the pipeline was designed, and the static tensile stress measurement experiment was carried out. Simulation and test results showed that the excitation coil with a larger diameter-to-height ratio had a higher measurement sensitivity. The sensitivity of the probe decreased monotonically with the increase of the difference between inner diameter and outer diameter of the detection coil. It increased monotonically with the increase of the equivalent radius of the detection coil. The best measurement results were obtained when the detection coil was located at the center of the two legs of the U-magnetic core. The results showed that the system could identify the pipeline stress concentration area effectively after detection engineering.

Funder

National Natural Science Foundation of China

Research on Defect Detection and Evaluation Technology of High-grade Steel Pipeline

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference24 articles.

1. Current situation analysis and Structural innovation of oil pipeline Engineering;Li;Theor. Res. Urban Constr. Electron. Ed.,2013

2. Present situation and prospect of crude oil pipeline in China;Wang;Pet. Plan. Des.,2012

3. A Brief Discussion on Anticorrosion Technology of Petroleum Pipeline Engineering;Chen;New Technol. New Prod. China,2019

4. Stress design of petrochemical pipelines;Chen;China Pet. Chem. Stand. Qual.,2019

5. River. Pipeline stress analysis in petrochemical design;Zhou;Shandong Chem. Ind.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3