Author:
Zhang Chun,Wang Yu,Liu Tao,Ke Hanbing
Abstract
Porous adsorbent material is promising to be used to regeneratively remove CO2 from space shuttles. In this work, the amount and isosteric heat of CO2 adsorption in solid amine are experimentally studied at pressures ranging from 0 to 6 bar and temperatures ranging from 20 °C to 60 °C. The amount and isosteric heat of water adsorption in the solid amine is tested at different humidities (relative humidity 30–80%). The effective thermal conductivity of the solid amine at different atmospheres (air, N2, CO2 and water), pressures and temperatures is also investigated. The results show that the best temperature for CO2 adsorption in the solid amine is 45 °C under dry conditions. The amount of water adsorption increases with enhanced humidity, while the isosteric heat of water adsorption remains a constant value. The effective thermal conductivity of the solid amine increases with an increase in pressure. The adsorbed phase (CO2 and water) in the solid amine makes a contribution to improving the effective thermal conductivity of solid amine particles. The above findings can help design a better adsorption system in space.
Funder
the Open Fund of the Key Laboratory of Thermal Power Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction