Exergy Efficiency and COP Improvement of a CO2 Transcritical Heat Pump System by Replacing an Expansion Valve with a Tesla Turbine

Author:

Aghagoli Abbas,Sorin Mikhail,Khennich Mohammed

Abstract

The heat pump system has been widely used in residential and commercial applications due to its attractive advantages of high energy efficiency, reliability, and environmental impact. The massive exergy loss during the isenthalpic process in the expansion valve is a major drawback of the heat pump system. Therefore, the Tesla turbine exergy analysis in terms of transiting exergy efficiency is investigated and integrated with the transcritical heat pump system. The aim is to investigate the factors that reduce exergy losses and increase the coefficient of performance and exergy efficiency. The contribution of this paper is twofold. First, a three-dimensional numerical analysis of the supercritical CO2 flow simulation in the Tesla turbine in three different geometries is carried out. Second, the effect of the Tesla turbine on the coefficient of performance and exergy efficiency of the heat pump system is investigated. The effect of the rotor speed and disk spacing on the Tesla turbine power, exergy loss, and transiting exergy efficiency is investigated. The results showed that at a lower disk spacing, the turbine produces higher specific power and transiting exergy efficiency. In addition, the coefficient of performance (COP) and exergy efficiency improvement in the heat pump system combined with the Tesla turbine are 9.8% and 28.9% higher than in the conventional transcritical heat pump system, respectively.

Funder

New Brunswick Innovation Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

1. Performance Analysis on CO2 Heat Pump Cycle with a Vortex Tube;Zhao;Proceedings of the 3rd International Conference on Smart Materials and Nanotechnology in Engineering,2016

2. Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants

3. Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network

4. Cycle parameter optimization of vortex tube expansion transcritical CO2 system

5. Thermodynamics analysis of a novel transcritical CO2 vortex tube heat pump cycle;Aghagoli;Proceedings of the 27th CANCAM

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3