Numerical Simulation of Gaseous Detonation Performance and Wall Reflection Effect of Acetylene-Rich Fuel

Author:

Gao HeORCID,Tang Hao

Abstract

The efficient utilization of energy in rich fuel detonation processes and the effective control method of soot are important topics in combustion research. In this paper, we numerically study the detonation wave behavior of acetylene–air systems in rich fuel condition by using a reduced reaction mechanism. The non-stiff terms of the governing equations are solved explicitly using the gas kinetic scheme, and the stiff terms are solved implicitly. Our results show that the acetylene pyrolysis is the dominant reaction process. The oxidation reaction is exploited to initiate the reaction induction process, providing the required energy to overcome the potential energy barrier. The secondary detonation structure is due to the stable interaction of the transverse waves and the combined action of the vinyl reaction system, thus effectively improve the energy release rate and providing a powerful solution for the fuel-rich high-energy release of advanced heat engines. The area of the unreacted pocket increases with the acetylene concentration, resulting in an irregular wave-front and detonation cell. The reflected shock wave impacting on the wall induces the secondary reaction of the detonation products. The concentration of polycyclic aromatic hydrocarbons decreases significantly and regenerates near the wall. Our approach provides an effective tool for controlling detonation soot and the preparation of carbon particles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3