Operando Analysis of Losses in Commercial-Sized Solid Oxide Cells: Methodology Development and Validation

Author:

Staffolani AntunesORCID,Baldinelli AriannaORCID,Bidini Gianni,Nobili FrancescoORCID,Barelli LindaORCID

Abstract

The development of decarbonised systems is being fostered by the increasing demand for technological solutions for the energy transition. Solid Oxide Cells are high-efficiency energy conversion systems that are foreseen for commercial development. They exhibit potential power generation and power-to-gas applications, including a reversible operation mode. Long-lasting high performance is essential for guaranteeing the success of the technology; therefore, it is fundamental to provide diagnosis tools at this early stage of development. In this context, operando analysis techniques help detect and identify incipient degradation phenomena to either counteract damage at its origin or correct operando protocols. Frequent switches from the fuel cell to the electrolyser mode add more challenges with respect to durable performance, and deep knowledge of reverse-operation-induced damage is lacking in the scientific and technical literature. Following on from preliminary experience with button cells, in this paper, the authors aim to transfer the methodology to commercial-sized Solid Oxide Cells. On the basis of the experimental evidence collected on planar square cells under dry and wet reactant feed gases, the main contributions to impedance are identified as being charge transfer (f = 103–104 Hz), oxygen surface exchanged and diffusion in bulk LSCF (f = 102–103 Hz), and gas diffusion in the fuel electrode (two peaks, f = 1–100 Hz). The results are validated using the ECM methodology, implementing an LRel(RctQ)GWFLW circuit.

Funder

Ministry of University and Research - Italy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference41 articles.

1. The role of storage technologies throughout the decarbonisation of the sector-coupled European energy system

2. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal,2020

3. Sunfire takes significant steps to clean energy on demand using solid oxide technology

4. Electrochemical hydrogen generation;Keçebaş,2019

5. Advancements regarding in-operando diagnosis techniques for solid oxide cells NiYSZ cermets;Baldinelli,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3