Abstract
Thermal infrared imagery is very much gaining in importance in the diagnosis of energy losses in cultural heritage through non-destructive measurement methods. Hence, owing to the fact that it is a very innovative and, above all, safe solution, it is possible to determine the condition of the building, locate places exposed to thermal escape, and plan actions to improve the condition of the facility. The presented work is devoted to the technology of creating a dense point cloud and a 3D model, based on data obtained from UAV. It has been shown that it is possible to build a 3D point model based on thermograms with the specified accuracy by using thermal measurement marks and the dense matching method. The results achieved in this way were compared and, as the result of this work, the model obtained from color photos was integrated with the point cloud created on the basis of the thermal images. The discussed approach exploits measurement data obtained with three independent devices (tools/appliances): a Matrice 300 RTK drone (courtesy of NaviGate); a Phantom 4 PRO drone; and a KT-165 thermal imaging camera. A stone church located in the southern part of Poland was chosen as the measuring object.
Funder
AGH University of Science and Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献