Effects of Strontium Content on the Microstructure and Ionic Conductivity of Samarium-Doped Ceria

Author:

Sherwood Toby,Baker Richard T.

Abstract

Due to its high oxygen ion conductivity at elevated temperatures, samarium-doped ceria (SDC) is a very promising material for application in solid state electrochemical devices and especially in the electrolytes of solid oxide fuel cells. Several prior studies have reported a further improvement in the ionic conductivity of SDC on doping with small amounts of strontium. It is suggested that strontium acts as a sintering aid—improving the microstructure of SDC—and as a scavenger of silicon impurities, decreasing its tendency to form resistive phases at grain boundaries. However, because of the range of preparation methods and the resulting differences in microstructure and silicon levels, some inconsistencies exist in the literature. Furthermore, the effect of strontium on the intrinsic (bulk) conductivity of SDC is not often discussed. To address these issues, a systematic, combined microstructural and conductivity study has been performed on a compositional series with a range of strontium contents, Ce0.8−xSm0.2SrxO2−δ (x = 0, 0.002, 0.005, 0.01, 0.02, 0.03, 0.04). A low temperature synthesis affording products with low silicon was employed. Total bulk and grain boundary conductivity data were obtained over a wide temperature range. Increasing strontium content caused a general decrease in total and intrinsic conductivity, but there was an improvement in grain boundary conductivity at the lowest strontium levels. These results were interpreted by reference to the microstructures using, among other parameters, the blocking, and normalised blocking, factors.

Funder

University of St Andrews

Publisher

MDPI AG

Reference42 articles.

1. Science and Technology of Ceramic Fuel Cells;Minh,1995

2. Design and Operation of Solid Oxide Fuel Cells: The Systems Engineering Vision,2019

3. Solid Oxide Fuel Cells: Materials Properties and Performance,2019

4. Solid Oxide Fuel Cell Technology: Principles, Performance and Operations;Huang,2009

5. Lowering the Temperature of Solid Oxide Fuel Cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3