Abstract
H13 stool steel processed by selective laser melting (SLM) suffered from severe brittleness and scatter distribution of mechanical properties. We optimized the mechanical response of as-SLMed H13 by tailoring the optimisation of process parameters and established the correlation between microstructure and mechanical properties in this work. Microstructures were examined using XRD, SEM, EBSD and TEM. The results showed that the microstructures were predominantly featured by cellular structures and columnar grains, which consisted of lath martensite and retained austenite with numerous nanoscale carbides being distributed at and within sub-grain boundaries. The average size of cellular structure was ~500 nm and Cr and Mo element were enriched toward the cell wall of each cellular structure. The as-SLMed H13 offered the yield strength (YS) of 1468 MPa, the ultimate tensile strength (UTS) of 1837 MPa and the fracture strain of 8.48%. The excellent strength-ductility synergy can be attributed to the refined hierarchical microstructures with fine grains, the unique cellular structures and the presence of dislocations. In addition, the enrichment of solute elements along cellular walls and carbides at sub-grain boundaries improve the grain boundary strengthening.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献