Investigation into Changes of Microstructure and Abrasive Wear Resistance Occurring in High Manganese Steel X120Mn12 during Isothermal Annealing and Re-Austenitisation Process

Author:

Dziubek MateuszORCID,Rutkowska-Gorczyca MałgorzataORCID,Dudziński Włodzimierz,Grygier DominikaORCID

Abstract

Hadfield steel, under unit pressure conditions, strengthens itself by forming a high density dislocation structure, which results in increased resistance to dynamic impact wear. However, under abrasion conditions, the homogeneous microstructure of the cast steel is insufficient to achieve the expected service life. The aim of the research is to conduct a comparative analysis of the material in its as-delivered state and after two-stage heat treatment (isothermal annealing followed by re-austenitisation). It was found that after isothermal annealing of X120Mn12 grade steel at a temperature of 510 °C, a microstructure with a complex morphology consisting of colonies of fine-grained pearlite, (Fe,Mn)3C carbides distributed along the grain boundaries of the former austenite and needle-like (Fe,Mn)3C carbides was obtained in the austenite matrix. The subsequent thermal treatment of the steel with the use of supersaturating annealing at 900 °C resulted in a heterogeneous microstructure consisting of evenly distributed globular carbide precipitations in a matrix of considerably finer austenite grains in comparison with the as-delivered original state. As a result of the final microstructural changes achieved, a 16.4% increase in abrasion resistance was obtained compared to the delivered condition.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3