Reducing Friction in Orthodontic Brackets: A Matter of Material or Type of Ligation Selection? In-Vitro Comparative Study

Author:

Dragomirescu Anca-Oana,Bencze Maria-AngelicaORCID,Vasilache Adriana,Teodorescu Elina,Albu Cristina-Crenguța,Popoviciu Nicoleta Olivia,Ionescu Ecaterina

Abstract

(1) Background: Orthodontic appliances have changed and improved with the increasing demand for orthodontic treatment of the general population. Patients desire for shorter orthodontic treatments and for the wearing of more aesthetic devices has led to the technological development of orthodontic brackets; these were manufactured from aesthetic materials (ceramics, composite polymers) and presented different designs regarding the way archwires are ligated to the bracket. The aim of this study was to determine whether there were any differences between the static frictional forces generated by stainless steel (metallic) and polycrystalline alumina (ceramics) conventional and self-ligating brackets. (2) Methods: Static friction assessment was carried out in vitro with a universal testing machine, HV-500N-S (Schmidt Control Instruments, Hans Schmidt & Co. GmbH), intended for measuring compression and traction forces. (3) Results: The study revealed significant differences in static frictional forces at the bracket-archwire interface between the tested brackets. Stainless steel brackets produced lower static friction forces than polycrystalline alumina and self-ligating brackets generally produced lower static frictional forces than conventional brackets. The reduction of frictional forces was noticeable in the first stages of treatment, when thin, flexible orthodontic archwires (0.016” NiTi) are used. Engaged with large rectangular stainless steel archwires, (0.019 × 0.025” SS), the frictional forces produced by conventional and self-ligating metal brackets were similar, no significant differences being observed between the two types of metallic design. However, in the case of tested ceramic brackets, the results showed that the self-ligating type allows a reduction in frictional forces even in advanced stages of treatment compared to conventionally ligation. (4) Conclusions: From the perspective of an orthodontic system with low frictional forces, metal brackets are preferable to aesthetic ones, and self-ligating ceramic brackets are preferable to conventional ceramic brackets.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3