MDC-RHT: Multi-Modal Medical Image Fusion via Multi-Dimensional Dynamic Convolution and Residual Hybrid Transformer

Author:

Wang Wenqing12ORCID,He Ji1,Liu Han12ORCID,Yuan Wei1ORCID

Affiliation:

1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China

Abstract

The fusion of multi-modal medical images has great significance for comprehensive diagnosis and treatment. However, the large differences between the various modalities of medical images make multi-modal medical image fusion a great challenge. This paper proposes a novel multi-scale fusion network based on multi-dimensional dynamic convolution and residual hybrid transformer, which has better capability for feature extraction and context modeling and improves the fusion performance. Specifically, the proposed network exploits multi-dimensional dynamic convolution that introduces four attention mechanisms corresponding to four different dimensions of the convolutional kernel to extract more detailed information. Meanwhile, a residual hybrid transformer is designed, which activates more pixels to participate in the fusion process by channel attention, window attention, and overlapping cross attention, thereby strengthening the long-range dependence between different modes and enhancing the connection of global context information. A loss function, including perceptual loss and structural similarity loss, is designed, where the former enhances the visual reality and perceptual details of the fused image, and the latter enables the model to learn structural textures. The whole network adopts a multi-scale architecture and uses an unsupervised end-to-end method to realize multi-modal image fusion. Finally, our method is tested qualitatively and quantitatively on mainstream datasets. The fusion results indicate that our method achieves high scores in most quantitative indicators and satisfactory performance in visual qualitative analysis.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3