GMSA-Net: A Transmission Line Ice Thickness Identification Network Based on Global Micro Strip Awareness

Author:

Zhang Yu123,Dou Yinke134ORCID,Jiao Yangyang3,Zhao Liangliang3,Guo Dongliang3

Affiliation:

1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Department of Automation, Taiyuan Institute of Technology, Taiyuan 030008, China

3. Shanxi Energy Internet Research Institute, Taiyuan 030032, China

4. Key Laboratory of Cleaner Intelligent Control on Coal & Electricity, Ministry of Education, Taiyuan 030024, China

Abstract

Ice-covered transmission lines seriously affect the normal operation of the power transmission system. Resonance deicing based on different ice thicknesses is an effective method to solve the issue of ice-covered transmission lines. In order to obtain accurate ice thickness of transmission lines, this paper designs an ice thickness of transmission line recognition model based on Global Micro Strip Awareness Net (GMSA-Net) and proposes a Mixed Strip Convolution Module (MSCM) and a global micro awareness module (GMAM). The MSCM adapts to the shape of ice-covered transmission lines by using strip convolutions with different receptive fields, improving the encoder’s ability to extract ice-covered features; the GMAM perceives through both global and micro parts, mining the connections between semantic information. Finally, the ice thickness of the generated segmented image is calculated using the method of regional pixel statistics. Experiments are conducted on the dataset of ice-covered transmission lines. The mean Intersection over Union (mIoU) of image segmentation reaches 96.4%, the balanced F-Score (F1-Score) is 98.1%, and the identification error of ice thickness is within 3.8%. Experimental results prove that this method can accurately identify the ice thickness of transmission lines, providing a control basis for the application of resonant deicing engineering.

Funder

Shanxi Provincial Higher Education Science and Technology Innovation Project

Shanxi Provincial Key Research and Development Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3