Overburden Failure Associated with Slicing Mining in a Super Thick Coal Seam under Special Weak Aquifers

Author:

Chen Kai,Ge Ying,Liu Zhiqi,Chen Lifeng,Zhang Quan

Abstract

With the increasing improvement of national ecological standards, the eco-environmental problems caused by super thick coal seam mining in western China are becoming more and more serious. The failure law of weak overburden stratum is an important factor affecting the safe mining of coal. The failure characteristics of weakly cemented overburden under high-intensity mining in the mining area of western China were studied. For this purpose, a case study was conducted in the 1101 working face of the Baituyao Coal Mine in Ürümqi County. Based on the analysis of geological conditions in the study area, we combined empirical calculations with engineering analogy, physical simulation, and numerical simulation to comprehensively analyze the characteristics of mining-induced overburden failure. The study showed that the overburden in the study area had several unfavorable engineering geological characteristics, including ease of softening in the presence of water. The Middle Jurassic Xishanyao Formation is a directly recharged aquifer with a weak water-retaining property. Overburden failure mainly occurred at the two ends of the open-off cut. During the mining process, vertical fissures and bed-separated fissures were periodically developed and closed, and the fissures were interconnected. The overburden was fractured, and the fractured zone showed a trapezoidal shape, tapering off from bottom to top. The heights of the caving zone and the water-conducting fracture zone were 25 and 280 m, respectively, in the 1101 working face of the Baituyao Coal Mine, and the ratio of fracturing to mining height was 14.0. Due to the weakly cemented overburden and the presence of the Neogene weak aquifer, the risk of water and sand bursts still exists in this working face under high-intensity mining. Our findings shed light on the safe mining and environmental protection of the ground surface in coal mine shafts in western China.

Funder

the National Natural Science Foundation of Xinjiang Uygur Autonomous Region of China

Open Fund Project of State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference28 articles.

1. Characteristics and mechanism of overlying strata movement due to high-intensity mining;Wang;J. China Coal Soc.,2018

2. Lithology and fissure characteristics of overburden in high-intensity mining;Yang;J. China Coal Soc.,2019

3. Development on basic theory of water protection during coal mining in northwest of China;Zhang;J. China Coal Soc.,2017

4. Suitability of aquifer-protection mining in ecologically fragile areas in western China;Liu;Environ. Earth Sci.,2020

5. Equivalent water-resisting overburden thickness for water-conservation mining: Conception, method and application;Zhang;J. China Coal Soc.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3