A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems

Author:

Molokomme Daisy NkeleORCID,Chabalala Chabalala S.ORCID,Bokoro Pitshou N.ORCID

Abstract

The cognitive smart grid (SG) communication paradigm aims to mitigate quality of service (QoS) issues in obsolete communication architecture associated with the conventional electrical grid. This paradigm entails the integration of advanced information and communication technologies (ICTs) into power grids, enabling a two-way flow of information. However, due to the exponential increase in wireless applications and services, also driven by the deployment of the Internet of Things (IoT) smart devices, SG communication systems are expected to handle large volumes of data. As a result, the operation of SG networks is confronted with the major challenge of managing and processing data in a reliable and secure manner. The existing works in the literature proposed architectures with the objective to mitigate the underlying QoS issues such as latency, bandwidth, data congestion, energy efficiency, etc. In addition, a variety of communication technologies have been analyzed for their capacity to support stringent QoS requirements for diverse SGs environments. This notwithstanding, a standard architecture designed to mitigate the aforementioned issues for SG networks remains a work-in-progress. The main objective of this paper is to investigate the emerging technologies such as cognitive radio networks (CRNs) as part of the Fifth-Generation (5G) mobile technology for reliable communication in SG networks. Furthermore, a hybrid architecture based on the combination of fog computing and cloud computing is proposed. In this architecture, real-time latency-sensitive information is given high priority, with fog edge based servers deployed in close proximity to home area networks (HANs) for preprocessing and analyzing of information collected from smart IoT devices. In comparison to the recent works in the literature, which are mainly based on CRNs and 5G separately, the proposed architecture in this paper incorporates the combination of CRNs and 5G for reliable and efficient communication in SG networks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference102 articles.

1. A Prototypal Architecture of a IEEE 21451 Network for Smart Grid Applications Based on Power Line Communications

2. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach

3. Strategic National Smart Grid Vision for the South African Electricity Supply Industryhttps://www.ee.co.za/wp-content/uploads/2017/12/Smart-Grid-Vision-Document-2017.pdf

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Allocation of Channels Within Cognitive Radio Based Smart Grid Using RHGO with Deep Q Probabilistic Procedure;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

2. Dynamic Spectrum Allocation and Pricing in CR-NAN for Smart Grid Using Machine Learning Techniques;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

3. A novel spectrogram based lightweight deep learning for IoT spectrum monitoring;Physical Communication;2024-06

4. Innovation in technology: A game changer for renewable energy in the European Union?;Natural Resources Forum;2024-03-08

5. Towards next generation power grid transformer for renewables: Technology review;Engineering Reports;2024-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3