A Novel Module Independent Straight Line-Based Fast Maximum Power Point Tracking Algorithm for Photovoltaic Systems

Author:

Debnath Anjan,Olowu Temitayo O.,Parvez ImtiazORCID,Dastgir Md Golam,Sarwat Arif

Abstract

The maximum power point tracking (MPPT) algorithm has become an integral part of many charge controllers that are used in photovoltaic (PV) systems. Most of the existing algorithms have a compromise among simplicity, tracking speed, ability to track accurately, and cost. In this work, a novel “straight-line approximation based Maximum Power Point (MPP) finding algorithm” is proposed where the intersections of two linear lines have been utilized to find the MPP, and investigated for its effectiveness in tracking maximum power points in case of rapidly changing weather conditions along with tracking speed using standard irradiance and temperature curves for validation. In comparison with a conventional Perturb and Observe (P&O) method, the Proposed method takes fewer iterations and also, it can precisely track the MPP s even in a rapidly varying weather condition with minimal deviation. The Proposed algorithm is also compared with P&O algorithm in terms of accuracy in duty cycle and efficiency. The results show that the errors in duty cycle and power extraction are much smaller than the conventional P&O algorithm.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3