A Modified Artificial Bee Colony for Probabilistic Peak Shaving Technique in Generators Operation Planning: Optimal Cost–Benefit Analysis

Author:

Sasi Mohammed Daw SalehORCID,Othman Muhammad Murtadha,Elbarsha AhmedORCID

Abstract

In the generation of operating system planning, saving utility cost (SUC) is customarily implemented to attain the forecasted optimal economic benefits in a generating system associated with renewable energy integration. In this paper, an improved approach for the probabilistic peak-shaving technique (PPS) based on computational intelligence is proposed to increase the SUC value. Contrary to the dispatch processing of the PPS technique, which mainly relies on the dispatching of each limited energy unit in sequential order, a modified artificial bee colony with a new searching mechanism (MABC-NSM) is proposed. The SUC is originated from the summation of the Saving Energy Cost and Saving Expected Cycling Cost of the generating system. In addition, further investigation for obtaining the optimal value of the SUC is performed between the SUC determined directly and indirectly estimated by referring to the energy reduction of thermal units (ERTU). Comparisons were made using MABC-NSM and a standard artificial bee colony and verified on the modified IEEE RTS-79 with different peak load demands. A compendium of the results has shown that the proposed method is constituted with robustness to determine the global optimal values of the SUC either obtained directly or by referring to the ERTU. Furthermore, SUC increments of 7.26% and 5% are achieved for 2850 and 3000 MW, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3