Abstract
The modeling of energy systems with high penetration of renewables is becoming more relevant due to environmental and security issues. Researchers need to support policy makers in the development of energy policies through results from simulating tools able to guide them. The EPLANopt model couples a multi-objective evolutionary algorithm to EnergyPLAN simulation software to study the future best energy mix. In this study, EPLANopt is applied at country level to the Italian case study to assess the best configurations of the energy system in 2030. A scenario, the result of the optimization, is selected and compared to the Italian integrated energy and climate action plan scenario. It allows a further reduction of CO2 emissions equal to 10% at the same annual costs of the Italian integrated energy and climate action plan scenario. Both these results are then compared to climate change scenarios through the carbon budget indicator. This comparison shows the difficulties to meet the Paris Agreement target of limiting the temperature increase to 1.5 °C. The results also show that this target can only be met through an increase in the total annual costs in the order of 25% with respect to the integrated energy and climate action plan scenario. However, the study also shows how the shift in expenditure from fossil fuels, external expenses, to investment on the national territory represents an opportunity to enhance the national economy.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference78 articles.
1. Energy Planning—An Overview|ScienceDirect Topicshttps://www.sciencedirect.com/topics/engineering/energy-planning
2. Energy Strategy—European Commission. 2030https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy
3. Impact of the level of temporal and operational detail in energy-system planning models
4. EnergyPLAN|Advanced Energy Systems Analysis Computer Modelhttp://www.energyplan.eu/
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献