Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios

Author:

Prina Matteo GiacomoORCID,Manzolini GiampaoloORCID,Moser David,Vaccaro Roberto,Sparber Wolfram

Abstract

The modeling of energy systems with high penetration of renewables is becoming more relevant due to environmental and security issues. Researchers need to support policy makers in the development of energy policies through results from simulating tools able to guide them. The EPLANopt model couples a multi-objective evolutionary algorithm to EnergyPLAN simulation software to study the future best energy mix. In this study, EPLANopt is applied at country level to the Italian case study to assess the best configurations of the energy system in 2030. A scenario, the result of the optimization, is selected and compared to the Italian integrated energy and climate action plan scenario. It allows a further reduction of CO2 emissions equal to 10% at the same annual costs of the Italian integrated energy and climate action plan scenario. Both these results are then compared to climate change scenarios through the carbon budget indicator. This comparison shows the difficulties to meet the Paris Agreement target of limiting the temperature increase to 1.5 °C. The results also show that this target can only be met through an increase in the total annual costs in the order of 25% with respect to the integrated energy and climate action plan scenario. However, the study also shows how the shift in expenditure from fossil fuels, external expenses, to investment on the national territory represents an opportunity to enhance the national economy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference78 articles.

1. Energy Planning—An Overview|ScienceDirect Topicshttps://www.sciencedirect.com/topics/engineering/energy-planning

2. Energy Strategy—European Commission. 2030https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy

3. Impact of the level of temporal and operational detail in energy-system planning models

4. EnergyPLAN|Advanced Energy Systems Analysis Computer Modelhttp://www.energyplan.eu/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3