Abstract
Optimal configurations for the working fluid expansion process in a piston-type cylinder with maximum work production are studied by applying finite time thermodynamics. The problem is solved by utilizing the modified Lagrangian. The initial and final volumes, initial internal energy and total time are fixed, and the heat transfer between the working fluid and the external heat bath obeys the generalized convective heat transfer law, which can be transformed into Newton’s heat transfer law, the Dulong–Petit heat transfer law and the square convective heat transfer law. The optimal configurations of the expansion process under three different conditions of heat transfer law are provided and compared, respectively. The results show that the heat transfer law has both quantitative and qualitative influences on the optimal configurations of the expansion process.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献