Abstract
This paper presents a new method for reducing the total harmonic distortion (THD) of photovoltaic (PV) systems by using an adaptive filter based on a predictive model. Instead of reducing the produced THD at each stage of the PV system, a one-step process is implemented at the end stage. The connection topology of the adaptive filter is similar to normal active and passive filters. The main difference is its ability to adjust the filtering coefficients while others cannot. The proposed method is applied to a single-phase standalone PV system by adopting least mean square (LMS), normalized LMS (NLMS) and leaky LMS algorithms to verify the validity of the proposed method. Various values of filter length and step size are evaluated, and results indicate that the proposed method can reduce THD in the current signal of the PV system significantly by using all of the mentioned algorithms. Different step sizes and filter lengths directly influence the effectiveness of the THD reduction, with small step sizes and long filters being the most effective. Amongst the algorithms, NLMS reduces THD the most, and LMS reaches the peak current value the fastest.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference64 articles.
1. Solar PV and Wind Energ Conversion Systems: An Introduction to Theory, Modeling with MATLAB/SIMULINK, and the Role of Soft Computing Techniques;Ashok Kumar,2015
2. Harmonic Distortion Caused by Single-Phase Grid-Connected PV Inverter;Du,2018
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献