Rapid Wear Modelling in a Slurry Pump Using Soft 3D Impeller Material

Author:

Jiang C.ORCID,Fleck B. A.,Lipsett M. G.

Abstract

Slurry transport systems are often limited in run length by the life of the pump internals, especially the impeller. The present work investigated abrasive wear of the impeller of a Hayward Gordon XR2(7) Torus Recessed Impeller slurry pump in a flow loop. The stock stainless steel impeller was replaced by a set of plastic test impellers with the same nominal geometry, fabricated by additive manufacturing (3D printing). A parametric set of abrasive wear experiments was conducted at five pump rotational speeds and three solid concentrations of garnet slurry in a pipe flow loop. Pump performance tests were conducted using impellers with progressive wear conditions, to investigate how a worn impeller affects hydraulic power delivery. A parabolic fit was imposed to describe the relationship between head and flow rate, and an empirical model was proposed to predict the pump head with damaged impellers. When the rotational speed is high, the damaged impeller has a larger effect on the pump’s performance than when the rotational speed is low. The head difference between the undamaged impeller and a 7.62%-mass-loss damaged impeller was 1.5 m at 1750 rpm rotational speed, however, for 850 rpm, the head difference was 1 m. Implications for pump diagnostics in other types of systems are discussed. This experiment gives a method for rapidly assessing wear locations, and provides a tool to predict wear rates on harder materials if scaling parameters are available. This first attempt at a scaling law is not reliable enough to accurately predict the wear rate for specific conditions, but shows the relative wear as a function of pertinent parameters.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3