On the Hybridization of Microcars with Hybrid UltraCapacitors and Li-Ion Batteries Storage Systems

Author:

Ortenzi FernandoORCID,Andrenacci NatasciaORCID,Pasquali Manlio,Villante CarloORCID

Abstract

The objective proposed by the EU to drastically reduce vehicular CO2 emission for the years up to 2030 requires an increase of propulsion systems’ efficiency, and accordingly, the improvement their technology. Hybrid electric vehicles could have a chance of achieving this, by recovering energy during braking phases, running in pure electric mode and allowing the internal combustion engine to operate under better efficiency conditions, while maintaining traditionally expected vehicle performances (mileage, weight, available on-board volume, etc.). The energy storage systems for hybrid electric vehicles (HEVs) have different requirements than those designed for Battery Electric Vehicles (BEVs); high specific power is normally the most critical issue. Using Li-ion Batteries (LiBs) in the designing of on-board Energy Storage Systems (ESS) based only on power specifications gives an ESS with an energy capacity which is sufficient for vehicle requirements. The highest specific power LiBs are therefore chosen among those technologically available. All this leads to an ESS design that is strongly stressed over time, because current output is very high and very rapidly varies, during both traction and regeneration phases. The resulting efficiency of the ESS is correspondingly lowered, and LiBs lifetime can be relevantly affected. Such a problem can be overcome by adopting hybrid storage systems, coupling LiBs and UltraCapacitors (UCs); by properly dimensioning and controlling the ESS’ components, in fact, the current output of the batteries can be reduced and smoothed, using UCs during transients. In this paper, a simulation model, calibrated and validated on an engine testbed, has been used to evaluate the performances of a hybrid storage HEV microcar under different operative conditions (driving cycles, environment temperature and ESS State of Charge). Results show that the hybridization of the powertrain may reduce fuel consumption by up to 27%, while LiBs lifetime may be more than doubled.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. ANCIhttp://www.anci.it/mobilita-sostenibile-ricerca-anci-nelle-citta-serpentoni-di-auto-vuote-ma-cala-inquinamento/

2. 16° Rapporto Sulla Mobilità Degli Italiani, Roma, 27/11/2019https://www.isfort.it/wp-content/uploads/2019/12/16_Rapporto_Audimob.pdf

3. https://www.repubblica.it/economia/2016/07/08/news/le_macchine_in_citta_girano_vuote_con_2_passeggeri_si_risparmierebbero_360_milioni-143682470/

4. A New Parallel Hybrid Concept for Microcars: Propulsion System Design, Modeling and Control;Villante,2019

5. Definition of Energy Management Technique for Series Hybrid. Vehicles;Barsali,2002

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3