Intelligent Network Applications Monitoring and Diagnosis Employing Software Sensing and Machine Learning Solutions

Author:

Minea MariusORCID,Dumitrescu Cătălin MarianORCID,Minea Viviana Laetitia

Abstract

The article presents a research in the field of complex sensing, detection, and recovery of communications networks applications and hardware, in case of failures, maloperations, or unauthorized intrusions. A case study, based on Davis AI engine operation versus human maintenance operation is performed on the efficiency of artificial intelligence agents in detecting faulty operation, in the context of growing complexity of communications networks, and the perspective of future development of internet of things, big data, smart cities, and connected vehicles. (*). In the second part of the article, a new solution is proposed for the detection of applications faults or unauthorized intrusions in traffic of communications networks. The first objective of the proposed method is to propose an approach for predicting time series. This approach is based on a multi-resolution decomposition of the signals employing the undecimate wavelet transform (UWT). The second approach for assessing traffic flow is based on the analysis of long-range dependence (LRD) (for this case, a long-term dependence). Estimating the degree of long-range dependence is performed by estimating the Hurst parameter of the analyzed time series. This is a relatively new statistical concept in communications traffic analysis and can be implemented using UWT. This property has important implications for network performance, design, and sizing. The presence of long-range dependency in network traffic is assumed to have a significant impact on network performance, and the occurrence of LRD can be the result of faults that occur during certain periods. The strategy chosen for this purpose is based on long-term dependence on traffic, and for the prediction of faults occurrence, a predictive control model (MPC) is proposed, combined with a neural network with radial function (RBF). It is demonstrated via simulations that, in the case of communications traffic, time location is the most important feature of the proposed algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3