A Numerical Investigation of the Effects of Wave-Induced Soil Deformation on Solute Release from Submarine Sediments

Author:

Liu Xiaoli12,Ye Taoling12,Xi Gangzheng12,Zhao Hongyi34

Affiliation:

1. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China

2. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China

3. College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China

4. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China

Abstract

The sustainable development of marine environments requires a deep understanding of their chemical and biological conditions. These are significantly impacted by the exchange of substances such as contaminants, heavy metals, and nutrients between marine sediments and the water column. Although the existing literature has addressed the physics of enhanced solute migration in sediment due to sea waves, the role of coupled flow and soil deformation has often been neglected. This study investigates the effects of wave-induced soil deformation on solute release from the marine sediment using a coupled numerical model that incorporates the effect of soil deformation into the advection–diffusion equation. The results reveal that solute release is notably accelerated in deformable sediments with a smaller shear modulus, with the longitudinal dispersion coefficient increasing up to five times as the shear modulus decreases from 108 Pa to 106 Pa. This enhancement is more pronounced in shallow sediments as the sediment permeability decreases, where the longitudinal dispersion coefficient in deformable sediments can be 15 times higher than that in non-deformable sediments at a hydraulic conductivity of 1 × 10−5 m/s. Furthermore, the rate of solute release increases with decreasing sediment saturation due to the compressibility of pore water, although this rate of increase gradually diminishes.

Funder

National Natural Science Foundation of China

TaiShan Scholars

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3