Mitigation of Photovoltaics Penetration Impact upon Networks Using Lithium-Ion Batteries

Author:

Bin Hudayb Khalid Abdullah1,Al-Shaalan Abdullah M.1,Hussein Farh Hassan M.2ORCID

Affiliation:

1. Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

2. Electrical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia

Abstract

The paper conducts a comprehensive analysis of the impact of very large-scale photovoltaic generation systems on various aspects of power systems, including voltage profile, frequency, active power, and reactive power. It specifically investigates IEEE 9-bus, 39-bus, and 118-bus test systems, emphasizing the influence of different levels of photovoltaic penetration. Additionally, it explores the effectiveness of battery energy storage systems in enhancing system stability and transient response. The transition to PV generation alters system stability characteristics, impacting frequency response and requiring careful management of PV plant locations and interactions with synchronous generators to maintain system reliability. This study highlights how high penetration of photovoltaic systems can improve steady-state voltage levels but may lead to greater voltage dips in contingency scenarios. It also explores how battery energy storage system integration supports system stability, showing that a balance between battery energy storage system capacity and synchronous generation is essential to avoid instability. In scenarios integrating photovoltaic systems into the grid, voltage levels remained stable at 1 per unit and frequency was tightly controlled between 49.985 Hz and 50.015 Hz. The inclusion of battery energy storage systems further enhanced stability, with 25% and 50% battery energy storage system levels maintaining strong voltage and frequency due to robust grid support and sufficient synchronous generation. At 75% battery energy storage system, minor instabilities arose as asynchronous generation increased, while 100% battery energy storage system led to significant instability and oscillations due to minimal synchronous generation. These findings underline the importance of synchronous generation for grid reliability as battery energy storage system integration increases.

Funder

King Saud University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3