Electrolytic Oxidation as a Sustainable Method to Transform Urine into Nutrients

Author:

Bensalah NasrORCID,Dbira Sondos,Bedoui Ahmed,Ahmad Mohammad I.ORCID

Abstract

In this work, the transformation of urine into nutrients using electrolytic oxidation in a single-compartment electrochemical cell in galvanostatic mode was investigated. The electrolytic oxidation was performed using thin film anode materials: boron-doped diamond (BDD) and dimensionally stable anodes (DSA). The transformation of urine into nutrients was confirmed by the release of nitrate (NO3−) and ammonium (NH4+) ions during electrolytic treatment of synthetic urine aqueous solutions. The removal of chemical oxygen demand (COD) and total organic carbon (TOC) during electrolytic treatment confirmed the conversion of organic pollutants into biocompatible substances. Higher amounts of NO3− and NH4+ were released by electrolytic oxidation using BDD compared to DSA anodes. The removal of COD and TOC was faster using BDD anodes at different current densities. Active chlorine and chloramines were formed during electrolytic treatment, which is advantageous to deactivate any pathogenic microorganisms. Larger quantities of active chlorine and chloramines were measured with DSA anodes. The control of chlorine by-products to concentrations lower than the regulations require can be possible by lowering the current density to values smaller than 20 mA/cm2. Electrolytic oxidation using BDD or DSA thin film anodes seems to be a sustainable method capable of transforming urine into nutrients, removing organic pollution, and deactivating pathogens.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3