Development and Validation of a Machine Learned Turbulence Model

Author:

Bhushan Shanti,Burgreen Greg W.ORCID,Brewer Wesley,Dettwiller Ian D.

Abstract

A stand-alone machine learned turbulence model is developed and applied for the solution of steady and unsteady boundary layer equations, and issues and constraints associated with the model are investigated. The results demonstrate that an accurately trained machine learned model can provide grid convergent, smooth solutions, work in extrapolation mode, and converge to a correct solution from ill-posed flow conditions. The accuracy of the machine learned response surface depends on the choice of flow variables, and training approach to minimize the overlap in the datasets. For the former, grouping flow variables into a problem relevant parameter for input features is desirable. For the latter, incorporation of physics-based constraints during training is helpful. Data clustering is also identified to be a useful tool as it avoids skewness of the model towards a dominant flow feature.

Funder

Engineering Research & Development Center

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entropy-driven Optimal Sub-sampling of Fluid Dynamics for Developing Machine-learned Surrogates;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

2. Assessment of neural network augmented Reynolds averaged Navier Stokes turbulence model in extrapolation modes;Physics of Fluids;2023-05-01

3. An iterative data-driven turbulence modeling framework based on Reynolds stress representation;Theoretical and Applied Mechanics Letters;2022-09

4. Research on grid‐dependence of neural network turbulence model;International Journal for Numerical Methods in Fluids;2022-06-30

5. Force Identification from Vibration Data by Response Surface and Random Forest Regression Algorithms;Energies;2022-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3