Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System

Author:

Ippolito Mariano G.,Musca Rossano,Zizzo GaetanoORCID

Abstract

The occurrence of system separations in the power system of Continental Europe has been observed in recent decades as a critical event which might cause power imbalances higher than the reference incident specified per system design, representing an actual challenge for the stability and safe operation of the system. This work presents an analysis and simulations of the primary frequency control in the Continental Europe synchronous area in conditions of system separation. The adopted approach is based on fundamental aspects of the frequency-containment reserve process. The analysis takes an actual event into consideration, which determined the separation of the system in January 2021. The main purpose of the work is the development of specific models and simulations able to reproduce the actual split event. Due to specific arrangements discussed in detail, it is possible to obtain a substantial match between the simulations and the frequencies registered after the system split. The work also provides insight into the importance of the temporal sequence of power imbalances and defensive actions in the primary frequency control process. The models developed in the work are finally used to investigate the separation event under different operating conditions, such as missing defensive actions and low inertia scenarios.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe—Requirements and Impacting Factors,2016

2. The relevance of inertia in power systems

3. Frequency stability analysis for inverter dominated grids during system split

4. Dispersed Generation Impact on CE Region Security,2014

5. Inertia Dependent Droop Based Frequency Containment Process

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3