Satisfaction-Based Energy Allocation with Energy Constraint Applying Cooperative Game Theory

Author:

Ortiz SamiraORCID,Ndoye Mandoye,Castro-Sitiriche MarcelORCID

Abstract

There has been an effort for a few decades to keep energy consumption at a minimum or at least within a low-level range. This effort is more meaningful and complex by including a customer’s satisfaction variable to ensure that customers can achieve the best quality of life that could be derived from how energy is used by different devices. We use the concept of Shapley Value from cooperative game theory to solve the multi-objective optimization problem (MOO) to responsibly fulfill user’s satisfaction by maximizing satisfaction while minimizing the power consumption, with energy constrains since highly limited resources scenarios are studied. The novel method uses the concept of a quantifiable user satisfaction, along the concepts of power satisfaction (PS) and energy satisfaction (ES). The model is being validated by representing a single house (with a small PV system) that is connected to the utility grid. The main objectives are to (i) present the innovative energy satisfaction model based on responsible wellbeing, (ii) demonstrate its implementation using a Shapley-value-based algorithm, and (iii) include the impact of a solar photovoltaic (PV) system in the energy satisfaction model. The proposed technique determines in which hours the energy should be allocated to maximize the ES for each scenario, and then it is compared to cases in which devices are usually operated. Through the proposed technique, the energy consumption was reduced 75% and the ES increased 40% under the energy constraints.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3