Author:
Ekberg Kristoffer,Eriksson Lars,Sundström Christofer
Abstract
A combustion engine-driven vehicle can be made more fuel efficient over some drive cycles by, for example, introducing electric machines and solutions for electrical energy storage within the vehicle’s driveline architecture. The possible benefits of different hybridization concepts depend on the architecture, i.e., the type of energy storage, and the placement and sizing of the different driveline components. This paper examines a diesel electric plug-in hybrid truck, where the powertrain includes a diesel engine supported with two electric motors, one supporting the crank shaft and one the turbocharger. Numerical optimal control was used to find energy-optimal control strategies during two different accelerations; the trade-off between using electrical energy and diesel fuel was evaluated using a simulation platform. Fixed-gear acceleration was performed to evaluate the contribution from the two electric motors in co-operation, and individual operation. A second acceleration test case from 8 to 80 km/h was performed to evaluate the resulting optimal control behavior when taking gear changes into account. A cost factor was used to relate the cost of diesel fuel to electrical energy. The selection of the cost factor relates to the allowed usage of electrical energy: a high cost factor results in a high amplification from electrical energy input to total system energy savings, whereas a low cost factor results in an increased usage of electrical energy for propulsion. The difference between fixed-gear and full acceleration is mainly the utilization of the electric crank shaft motor. For the mid-range of the cost factors examined, the crank shaft electric motor is used at the end of the fixed-gear acceleration, but the control sequence is not repeated for each gear during the full acceleration. The electric motor supporting the turbocharger is used for higher cost factors than the crank shaft motor, and the amplification from electrical energy input to total energy savings is also the highest.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference30 articles.
1. ACEA Report Vehicles in Use Europe 2017https://www.acea.be/statistics/article/vehicles-in-use-europe-2017
2. Medium and Heavy Trucks over 3.5 T New Registrations by Fuel Type in the European Unionhttps://www.acea.be/uploads/press_releases_files/ACEA_trucks_by_fuel_type_full-year_2019.pdf
3. Hybrid electric vehicles and their challenges: A review
4. Optimal Energy Management and Velocity Control of Hybrid Electric Vehicles
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献