Testing Stability of Digital Filters Using Optimization Methods with Phase Analysis

Author:

Trofimowicz Damian,Stefański Tomasz P.ORCID

Abstract

In this paper, novel methods for the evaluation of digital-filter stability are investigated. The methods are based on phase analysis of a complex function in the characteristic equation of a digital filter. It allows for evaluating stability when a characteristic equation is not based on a polynomial. The operation of these methods relies on sampling the unit circle on the complex plane and extracting the phase quadrant of a function value for each sample. By calculating function-phase quadrants, regions in the immediate vicinity of unstable roots (i.e., zeros), called candidate regions, are determined. In these regions, both real and imaginary parts of complex-function values change signs. Then, the candidate regions are explored. When the sizes of the candidate regions are reduced below an assumed accuracy, then filter instability is verified with the use of discrete Cauchy’s argument principle. Three different algorithms of the unit-circle sampling are benchmarked, i.e., global complex roots and poles finding (GRPF) algorithm, multimodal genetic algorithm with phase analysis (MGA-WPA), and multimodal particle swarm optimization with phase analysis (MPSO-WPA). The algorithms are compared in four benchmarks for integer- and fractional-order digital filters and systems. Each algorithm demonstrates slightly different properties. GRPF is very fast and efficient; however, it requires an initial number of nodes large enough to detect all the roots. MPSO-WPA prevents missing roots due to the usage of stochastic space exploration by subsequent swarms. MGA-WPA converges very effectively by generating a small number of individuals and by limiting the final population size. The conducted research leads to the conclusion that stochastic methods such as MGA-WPA and MPSO-WPA are more likely to detect system instability, especially when they are run multiple times. If the computing time is not vitally important for a user, MPSO-WPA is the right choice, because it significantly prevents missing roots.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Adaptive Mesh Generator for Global Complex Roots and Poles Finding Algorithm;IEEE Transactions on Microwave Theory and Techniques;2023-07

2. Global Complex Roots and Poles Finding Algorithm in C × R Domain;IEEE Access;2023

3. Multipath Complex Root Tracing;2022 24th International Microwave and Radar Conference (MIKON);2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3