Experimental Study on Catalytic Combustion of Methane in a Microcombustor with Metal Foam Monolithic Catalyst

Author:

Li Yanxia,Luo Chaoming,Liu ZhongliangORCID,Lin Feng

Abstract

Utilizing catalysts in microcombustors is probably an excellent practical solution to stabilize fuel combustion because of the relatively fast reaction speed. In the present work, the monolithic catalyst Pd/A2O3/Fe-Ni with metal foam as matrix was used inside a 5 mm in diameter microcombustor. Then the effects of inlet velocity and equivalent ratio on catalytic combustion characteristics of methane were studied experimentally. The results showed that the methane and air mixture with the stoichiometric ratio Φ = 1.0 could be ignited at v = 0.2–0.6 m/s. The velocity of premixed mixture had a great influence on the catalytic combustion of methane. The larger the inlet velocity, the higher the temperature and the brighter the flame were. The experiment results also showed that the equivalence ratio had a large essential impact on the catalytic combustion, especially for the lean mixture of methane and air. It seemed the addition of the porous matrix with catalysts could significantly extend the limits of stable combustion. In the detection of exhaust gas, CO selectivity increased and CO2 selectivity decreased with the equivalence ratio. When Φ was between 0.94 and 1.0 m/s, a little amount of hydrogen was produced due to the lack of oxygen. The measured conversion of methane to CO and CO2 was very high, usually greater than 99%, which indicated the excellent performance of the catalyst.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3