A Spatial–Spectral Joint Attention Network for Change Detection in Multispectral Imagery

Author:

Zhang WuxiaORCID,Zhang Qinyu,Liu Shuo,Pan Xiaoying,Lu Xiaoqiang

Abstract

Change detection determines and evaluates changes by comparing bi-temporal images, which is a challenging task in the remote-sensing field. To better exploit the high-level features, deep-learning-based change-detection methods have attracted researchers’ attention. Most deep-learning-based methods only explore the spatial–spectral features simultaneously. However, we assume the key spatial-change areas should be more important, and attention should be paid to the specific bands which can best reflect the changes. To achieve this goal, we propose the spatial–spectral joint attention network (SJAN). Compared with traditional methods, SJAN introduces the spatial–spectral attention mechanism to better explore the key changed areas and the key separable bands. To be more specific, a novel spatial-attention module is designed to extract the spatially key regions first. Secondly, the spectral-attention module is developed to adaptively focus on the separable bands of land-cover materials. Finally, a novel objective function is proposed to help the model to measure the similarity of learned spatial–spectral features from both spectrum amplitude and angle perspectives. The proposed SJAN is validated on three benchmark datasets. Comprehensive experiments have been conducted to demonstrate the effectiveness of the proposed SJAN.

Funder

the National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Change detection of Jamuna River and its impact on the local settlements

2. Normalized difference vegetation index analysis of forest cover change detection in Paro Dzongkhag, Bhutan;Pasang,2022

3. Monitoring seasonal changes of Meighan wetland using SAR, thermal and optical remote sensing data;Hajarian;Phys. Geogr. Res. Q.,2021

4. Use of multispectral and hyperspectral satellite imagery for monitoring waterbodies and wetlands;Hasanlou,2021

5. Updating land cover map based on change detection of high-resolution remote sensing images

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3