Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables

Author:

Potočnik Buhvald AnaORCID,Račič Matej,Immitzer MarkusORCID,Oštir KrištofORCID,Veljanovski TatjanaORCID

Abstract

Detailed spatial data on grassland use intensity is needed in several European policy areas for various applications, e.g., agricultural management, supporting nature conservation programs, improving biodiversity strategies, etc. Multisensory remote sensing is an efficient tool to collect information on grassland parameters. However, there is still a lack of studies on how to process, combine, and implement large radar and optical image datasets in a joint observation framework to map grassland types on large heterogeneous study areas. In our study, we assessed the usefulness of 2521 Sentinel-1 and 586 Sentinel-2 satellite images and topographic data for mapping grassland use intensity. We focused on the distinction between intensively and extensively managed permanent grassland in a large heterogeneous study area in Slovenia. We provided dense Satellite Image Time Series (SITS) for 2017, 2018 and 2019 to identify important differences, e.g., management practices, between the two grassland types analysed. We also investigated the effectiveness of combining two different remote-sensing products, the optical Normalised Difference Vegetation Index (NDVI) and radar coherence. Grassland types were distinguished using an object-based approach and the Random Forest classification. With the use of SITS only, the models achieved poor performance in the case of cloudy years (2018). However, the performance improved with additional features (environmental variables). The feature selection method based on Mean Decrease Accuracy (MDA) provided a deeper insight into the high-dimensional multisensory SITS. It helped select the most relevant features (acquisition dates, environmental variables) that distinguish between intensive and extensive grassland types. The addition of environmental variables improved the overall classification accuracy by 7–15%, while the feature selection additionally improved the final overall classification accuracy (using all available features) by 2–3%. Although the reference dataset was limited (1259 training samples), the final overall classification accuracy was above 88% in all years analysed. The results show that the proposed Random Forest classification using combined multisensor data and environmental variables can provide better and more stable information on grasslands than single optical or radar data SITS on large heterogeneous areas. Therefore, a combined approach is recommended to distinguish different grassland types.

Funder

Earth observation and geoinformatics

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3