Drone-Based Bathymetry Modeling for Mountainous Shallow Rivers in Taiwan Using Machine Learning

Author:

Lee Chih-Hung,Liu Li-WeiORCID,Wang Yu-MinORCID,Leu Jan-Mou,Chen Chung-LingORCID

Abstract

The river cross-section elevation data are an essential parameter for river engineering. However, due to the difficulty of mountainous river cross-section surveys, the existing bathymetry investigation techniques cannot be easily applied in a narrow and shallow field. Therefore, this study aimed to establish a model suitable for mountainous river areas utilizing an unmanned aerial vehicle (UAV) equipped with a multispectral camera and machine learning-based gene-expression programming (GEP) algorithm. The obtained images were combined with a total of 171 water depth measurements (0.01–1.53 m) for bathymetry modeling. The results show that the coefficient of determination (R2) of GEP is 0.801, the mean absolute error (MAE) is 0.154 m, and root mean square error (RMSE) is 0.195 m. The model performance of GEP model has increased by 16.3% in MAE, compared to conventional simple linear regression (REG) algorithm, and also has a lower bathymetry retrieval error both in shallow (<0.4 m) and deep waters (>0.8 m). The GEP bathymetry retrieval model has a considerable degree of accuracy and could be applied to shallow rivers or near-shore areas under similar conditions of this study.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. The 2018 Annual Report on the Management and Implementation of Kaoping River Basin,2019

2. Links between erosion, runoff variability and seismicity in the Taiwan orogen

3. Bathymetry: Seafloor mapping history;Dierssen,2020

4. Unmanned Aerial Vehicles for Geographic Data Capture: A Review;Gustafsson;Bachelor’s Thesis,2017

5. High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3