Assessment of Permeability Windbreak Forests with Different Porosities Based on Laser Scanning and Computational Fluid Dynamics

Author:

An LikunORCID,Wang Jia,Xiong Nina,Wang Yutang,You Jiashuo,Li Hao

Abstract

Accurate modeling of windbreaks is essential for the precise assessment of wind protection performance. However, in most windbreak studies, the models used the approximate shape of the simulated trees, resulting in significant differences between the simulated results and the actual situation. In this study, terrestrial laser scanning (TLS) was used to extract tree parameters, which were used in a quantitative structural model (AdQSM) to recreate the tree structure and restore the wind field environment using the computational fluid dynamics software PHOENICS. In addition, we compared the bias, precision, and accuracy of porosity of Ginkgo biloba (with elliptical crown) and Populus alba (with conical crown), which have been commonly used in previous windbreak studies. The results showed that AdQSM has a high reduction rate and ability to reproduce the field conditions of the study area. After wind field simulation, the wind speed root mean square errors of the point cloud model at three heights (3, 6, and 9 m) were 0.272, 0.377, and 0.437 m/s, respectively, and the wind speed correlation coefficients r were 0.967, 0.965, and 0.937, respectively, which were significantly more accurate than those of the remaining two structures. Finally, the porosity of the windbreak forest obtained using the modeled sample plot showed a higher correlation with the wind permeability coefficient than that obtained using the existing approach. Windbreak models with three different porosities under the same conditions had different effects on the wind environment, particularly the location of the maximum wind speed reduction, variation of wind speed with porosity, and recovery rate of leeward wind speed. TLS can accurately extract windbreak factors and calculate the porosity, thus greatly improving the reliability of windbreak effect research in windbreak forests. This study provides a promising direction for future research related to the simulation of windbreak effects in windbreak forests.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3