Contributions of Various Sources to the Higher-Concentration Center of CO within the ASM Anticyclone Based on GEOS-Chem Simulations

Author:

Yang YuepengORCID,Li Qian,Wang Haoyue,Bai Zhixuan,Li Dan,Wang Weiguo,Bian Jianchun

Abstract

Satellite observations show that carbon monoxide (CO) concentration centers exist in the tropopause region of the Tibetan Plateau, while their sources and formation mechanism still remain uncertain. In this paper, the 3-D chemical transport model GEOS-Chem is used to conduct sensitivity analysis in 2016. Combined with the analysis data and satellite data, the contribution of three important emission sources (South Asia, East Asia and Southeast Asia) and two important chemical reaction species (CH4 and nonmethane volatile organic compounds (NMVOCs)) to CO in the upper troposphere and lower stratosphere (UTLS) are studied. The results show that in the Asian monsoon region CO emissions originating from the surface are transported to the upper troposphere via a deep convection process and then enter the Asian Summer Monsoon (ASM) anticyclone. The strong ASM anticyclone isolates the mixing process of air inside and outside the anticyclone, upon entry of carbon monoxide-rich air. In the lower stratosphere, the intensity of the ASM anticyclone declines and the air within the anticyclone flows southwestward with monsoon circulation. We found that in the summer Asian monsoon region, South Asia exhibited the highest carbon monoxide concentration transported to the UTLS. CH4 imposed the greatest influence on the CO concentration in the UTLS region. According to the model simulation results, the CO concentrations in the Asian monsoon region at 100 hPa altitudes were higher than those in other regions at the same latitudes. Regarding effects, 43.18% originated from CH4 chemical reactions, 20.81% originated from NMVOC chemical reactions, and 63.33% originated from surface CO emissions, while sinks yielded a negative contribution of −27.32%. Regarding surface CO emissions, East Asia contributed 13.56%, South Asia contributed 39.27%, and Southeast Asia contributed 7.15%.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference24 articles.

1. Stratospheric ozone depletion and Antarctic ozone hole;Mohanakumar,2008

2. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere

3. Origin and distribution of the polyatomic molecules in the atmosphere;Dobson;Proc. R. Soc. London. Ser. A Math. Phys. Sci.,1956

4. Fine-scale structure of the extratropical tropopause region

5. An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3