A Novel Approach for the Global Detection and Nowcasting of Deep Convection and Thunderstorms

Author:

Müller RichardORCID,Barleben AxelORCID,Haussler Stéphane,Jerg Matthias

Abstract

Thunderstorms are among the most common and most dangerous meteorological hazards in the world. They cause lightning and can lead to strong wind gusts, squall lines, hail and heavy precipitation combined with flooding, and therefore pose a threat to health and life, can cause enormous property damage and also endanger flight safety. Monitoring and forecast of thunderstorms are, therefore, important topics. In this work, a novel method for the detection and forecast of thunderstorms and strong convection is presented. The detection is based on the global GLD360 lightning data in combination with satellite information from the satellite series Meteosat, HIMAWARI and GOES, covering the complete geostationary ring. Three severity levels are defined depending on the occurrence of lightning and the brightness temperature difference of the water vapour channels and the infrared window channel (∼10.8 μm). The detection of thunderstorms and strong convection is the basis for the nowcasting up to 2 h, which is performed with the optical flow method TV-L1. This method provides the needed atmospheric motion vectors for the extrapolation of the thunderstorm movement. Both, the validation results as well as the feedback of the customers show the great value of the new NowCastSat-Aviation (NCS-A) method. For example, the Critical Success Index (CSI) is, with 0.64, still quite high for the 60 min forecast of severe thunderstorms. The method is operated 24/7 by the German Weather Service (DWD), and is used to provide thunderstorm information to aviation customers and the central weather forecast unit of DWD.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Cell-tracking with lightning data from LINET

2. The comparison of GLD360 and EUCLID lightning location systems in Europe

3. VAISALA GLD360 Global Dataset—Understanding the GLD360 Dataset,2022

4. Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations

5. GLD360 Upgrade: Performance Analysis and Applications;Said;Proceedings of the 24th International Lightning Detection Conference and 6th International Lightning Meteorology Conference,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3