Fine-Scale Mapping of Soil Organic Matter in Agricultural Soils Using UAVs and Machine Learning

Author:

Heil JannisORCID,Jörges Christoph,Stumpe Britta

Abstract

The fine-scale mapping of soil organic matter (SOM) in croplands is vital for the sustainable management of soil. Traditionally, SOM mapping relies on laboratory methods that are labor-intensive and costly. Recent advances in unmanned aerial vehicles (UAVs) afford new opportunities for rapid and low-cost SOM mapping at the field scale. However, the conversion from UAV measurements to SOM maps requires specific transfer models that still rely on local sampling. This study aimed to develop a method for predicting topsoil SOM at a high resolution on the field scale based on soil color information gained from low-altitude UAV imagery and machine learning. For this, we performed a UAV survey in cropland within the German loess belt. We used two fields, one for training and one for validation of the model, to test the model transferability. We analyzed 91 soil samples for SOM in the laboratory for the model calibration and 8 additional samples for external model validation. A random forest model (RF) showed good performance for the prediction of SOM based on UAV-derived color information with an RMSE of 0.13% and with an RPIQ of 2.42. The RF model was used to predict SOM at a point-support of 1 × 1 m. The SOM map revealed spatial patterns within the fields with a uniform spread of the prediction uncertainty. The validation of the model performed similarly to the calibration with an RMSE of 0.12% and an RPIQ of 2.05, albeit with a slight bias of 0.05%. This validation using external data showed that prediction models are transferable to neighboring fields, thus permitting the prediction on larger scale farms or enabling carbon monitoring over time.

Funder

University of Wuppertal

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3