Quantifying Ecological Landscape Quality of Urban Street by Open Street View Images: A Case Study of Xiamen Island, China

Author:

Wen Dongxin,Liu Maochou,Yu ZhaowuORCID

Abstract

With the unprecedented urbanization processes around the world, cities have become the main areas of political, cultural, and economic creation, but these regions have also caused environmental degradation and even affected public health. Ecological landscape is considered as an important way to mitigate the impact of environmental exposure on urban residents. Therefore, quantifying the quality of urban road landscape and exploring its spatial heterogeneity to obtain basic data on the urban environment and provide ideas for urban residents to improve the environment will be a meaningful preparation for further urban planning. In this study, we proposed a framework to achieve automatic quantifying urban street quality by integrating a mass of street view images based on deep learning and landscape ecology. We conducted a case study in Xiamen Island and mapped a series of spatial distribution for ecological indicators including PLAND, LPI, AI, DIVISION, FRAC_MN, LSI and SHDI. Additionally, we quantified street quality by the entropy weight method. Our results showed the streetscape quality of the roundabout in Xiamen was relatively lower, while the central urban area presented a belt-shaped area with excellent landscape quality. We suggested that managers could build vertical greening on some streets around the Xiamen Island to improve the street quality in order to provide greater well-being for urban residents. In this study, it was found that there were still large uncertainties in the mechanism of environmental impact on human beings. We proposed to strengthen the in-depth understanding of the mechanism of environmental impact on human beings in the process of interaction between environment and human beings, and continue to form general models to enhance the ability of insight into the urban ecosystem.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3