Author:
Feng Jianqing,Siegler Matthew A.,White Mackenzie N.
Abstract
This work analyzes the observations from the Lunar Regolith Penetrating Radar (LRPR) onboard Chang’E-5 to reconstruct the subsurface structure of the regolith under the lander at the drilling site. This is the first stationary Ground-Penetrating Radar (GPR) array to operate on the Moon. Imaging results of pre-drilling and post-drilling measurements show that the thickness of local regolith is larger than 2 m. Within the LRPR’s detection range, we do not find any continuous layer. Instead, irregular, high-density zones are identified in the regolith. Two of these zones are on the drilling trajectory at ~30 cm and ~70 cm, consistent with the recorded drilling process. We speculate a rock fragment from the deeper, high-density zone obstructed the drill, which led to an early termination of the drilling. Based on our interpretation of subsurface structure, we modeled the LRPR echoes using a finite-difference time-domain method. The same imaging algorithm was also applied to the simulation data. The modeled data verify our inference of the regolith structure under the lander.
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献