Spatial and Spectral-Channel Attention Network for Denoising on Hyperspectral Remote Sensing Image

Author:

Dou Hong-Xia,Pan Xiao-Miao,Wang Chao,Shen Hao-Zhen,Deng Liang-Jian

Abstract

Hyperspectral images (HSIs) are frequently contaminated by different noises (Gaussian noise, stripe noise, deadline noise, impulse noise) in the acquisition process as a result of the observation environment and imaging system limitations, which makes image information lost and difficult to recover. In this paper, we adopt a 3D-based SSCA block neural network of U-Net architecture for remote sensing HSI denoising, named SSCANet (Spatial and Spectral-Channel Attention Network), which is mainly constructed by a so-called SSCA block. By fully considering the characteristics of spatial-domain and spectral-domain of remote sensing HSIs, the SSCA block consists of a spatial attention (SA) block and a spectral-channel attention (SCA) block, in which the SA block is to extract spatial information and enhance spatial representation ability, as well as the SCA block to explore the band-wise relationship within HSIs for preserving spectral information. Compared to earlier 2D convolution, 3D convolution has a powerful spectrum preservation ability, allowing for improved extraction of HSIs characteristics. Experimental results demonstrate that our method holds better-restored results than other compared approaches, both visually and quantitatively.

Funder

research start-up funding of Xihua University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3